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Abstract. In addition to the accuracy-through-order requirement that the defining polynomials
not all be divisible by z, as required for Padé and integral approximants, there is the further
problem of deficiency as pointed out by MclInnes. I prove a finite bound on the deficiency and
also prove the accuracy-through-order property for algebraic approximants. In addition I prove the
equivalence property for algebraic approximants.
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In the study of Padé approximants, there are a number of basic properties, which
are fundamental, and are so well known that they are often taken for granted.
The theory of algebraic approximants is not so well developed and some of these
properties are not, yet established. The theory of both types of approximants is a
special case of the theory of Hermite-Padé approximants and starts with a linear,
polynomial-defining equation,

k

D Pi(2)f5(2) = 0(z*),

J=0

for the P;(z)’s plus some initial conditions. The approximant involves the solution
of

k
> Pi(2)yi(z) =0,

i=0

where the y;(z)’s are related to each other in a manner akin the the way the f;(z)’s
are related to each other. The first basic property is to show that as the degree
of contact at the origin in the polynomial defining equation increase indefinitely,
then so too does the degree of contact between the f;(z)’s and the y;(z)’s. This
property is called the accuracy-through-order property. The next basic property
is uniqueness. It consists of two parts. First the uniqueness of the approximant
polynomials and second the uniqueness of the solution, given the polynomials, for
the approximant. Finally there is the problem of equivalence. It is, in the case of
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the Padé approximant stated as, for a function g(z) which is analytic at the origin,

. .
Ej:o cjz!

9(2) = T S

if and only if,
[L/M),=[l/m], VL>1, M >m,

where [A/p], is the Padé approximant to g(z) with the degree of the numerator
polynomial equal to at most A and the degree of the denominator polynomial equal
to at most py. The Padé polynomials satisfy a defining equation with s = A + p.
The problem of uniqueness of the polynomials has been addressed by Baker and
Graves-Morris (1990) and of the solution by McInnes (1992). The Padé approxi-
mants also have very useful invariance properties with respect to linear fractional
transformations of both their arguments and their values. This property is shared by
the algebraic approximants (Baker, 1984). So far however, the accuracy-through-
order property and the equivalence property for algebraic approximants have not
been adequately treated. We will give results on these properties.

The algebraic approximants were introduce by Padé (1892) and an investigation
of the quadratic case was made by Shafer (1974).

DeFINITION 1. Let a function f(z) be given in terms of its Maclaurin expansion.
We define the algebraic polynomials Q) m; by the accuracy-through-order principle
by means of

k
3 Qi D (P = O(=1), (1)
j=—1

where the Qj m,(z) are polynomials of degree at most m; and s is given by

k
M:Z(mj+l)—1, s=M4+m_;. (2)
7=0
We will use the convention that if m; = —1, then Q;_1(z) = 0. The algebraic
approximant is denoted by (m_1/my,...,my) and is defined by the solution y(z) of
k .

> Qi (W =0, where y(0) = (0). 3)

j=-1

We will always assume that f(0) # 0. Of course, we can impose additional
boundary conditions at z = 0, if necessary to break the degeneracy of the possible
solutions. See McInnes (1992) for an additional discussion of this point.

In order to complete the definition of these approximants, attention must be
paid to the possibility that (1) does not uniquely define the polynomials. The points
where Q,m, (#) vanishes correspond to singularities. Consequently, in the case where
the polynomials are not uniquely determined it would be desirable, in my view, to
eliminate any arbitrary or spurious singularities that are introduced by this lack
of uniqueness. We complete these definitions by using the minimal polynomials of
Baker and Graves-Morris (1990)
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DEFINITION 2. A solution for the algebraic polynomials of type (m_y,...,my) to
f(#) is called minimal if it is of the lowest degree in the following sense. First there
exists no other solution of type (m_y,...,my) for which the actual degree of Q m,
is smaller. If there exist solutions of type (m_1,...,my) for which Qp m, = 0, then
we minimize the degree of Qr—1,m;_,,Qr—2,m;_,, €tc. to find the minimal solution.

Uniqueness is insured by their arguments. In addition, we will impose the condi-
tion that Qm(O) # 0. Baker and Graves-Morris (1994) have proven that we may do
so and, although some types 1 may then fail to exist, the table of approximants is
as complete, in so far as the derived approximants are concerned, as was the table
of approximants derived from the minimal polynomials. Some of the repeats in the
table may however have been dropped by this restriction.

A very important property of Padé approximants is that of accuracy-through
order. In that case, the requirement that the denominator polynomial not vanish at
the origin was sufficient to show that the Padé approximant agreed with the defining
series to the same order in z, as the accuracy of the polynomial defining equations.
For integral approximants the same results obtain, but for algebraic approximants,
as we shall see, the results are roughly true as well, but the situation is a bit more
complex. This question has been addressed by Baker and Graves-Morris (1990) for
the case of integral approximants, and by McInnes (1992) in the algebraic case.

In order to analyze the problem of accuracy-through-order for the algebraic ap-
proximants, we need, following McInnes (1992), to introduce the concept of defi-
ciency. While our minimal definition for the algebraic polynomials and the results
of Baker and Graves-Morris (1994) insure that we need only look at cases for which
Qm(O) # 0, there is another quantity which is important to consider in the algebraic
case, i.e., the coefficient of dy/dz in (5) below.

DEFINITION 3. The deficiency d of the algebraic polynomials to f(z) is given by

(G + DQjim, (DF ()Y ¢ 27 (4)

k
z—0
=0

J

THEOREM 4. If the error in the algebraic polynomial defining equation is O(z™)

and the deficiency of the algebraic polynomials is d, then the Maclaurin series for
the algebraic approximant differs from the defining series with an error at worst

O(z™~%) when we specify that y)(0) = f()(0) for j =0,...,d.

Proor: First, if we differentiate the approximant defining equation (with error
displayed for convenience), we get,

k k
26+ 1Qim, (D) dZ—U == > Qm, @ +0("),  (5)

Jj=0 j=—1

where s is defined by (2) and ¢ is the degree of oversatisfaction defined by,

k
X Qi AU = 0=, (6)

Jj=-1
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and where the right-hand side is to be of true stated order. Suppose that the
deficiency is d = 0, then by letting z — 0 in (5) we can compute y; from yo = fo,
where y(z) = Z;io yjzj. If we now compute the coefficient of z7 in (5) we find that
it involves y;j41 linearly with the coefficient proportional to the limit in (4) which
is non-zero in this case. Thus we can solve in a unique recursive manner for all the
coeflicients y;. By the defining equation, the f; are also a solution within the error,
so we get y; = f; for 7 = 0,...s 4 ¢ which establishes the accuracy-through-order
results for this case. If the deficiency d > 0, then if we examine (5), since it is also
satisfied by f(z) as well as y(z), and f’(0) is finite, the left-hand side vanishes like
2% and so too must the right-hand side. Here we have used the initial conditions
y1(0) = f9)(0) for j =0,...,d. We next observe that in the defining equation (3)
the coefficients of 27 to 22/~ are linear in yj, since y]2~ can not appear at lower order

that 227, as every y; appears only in the combination y; 2J so that y]z carries at least

2d+1 must

a factor of 227, etc. Consider the case of deficiency d. The coefficient of z
be linear in Y441, ..., Y2a+1- The coefficient in (3) of 2241y, forn=1,...,d+1
can be seen to be the coefficient of z+t1 =" in the coefficient of dy/dz on the left-hand
side of (5). This result follows by noting that this coefficient is the partial derivative
of (3) with respect to y(z) and so will give the coefficient of the linear terms. Thus
because the deficiency is d, only yg4+; has a non-zero coefficient. This coefficient
necessarily involves only vq,...,yd, which we have set equal to the corresponding
fi’s by the initial conditions. As we examine the higher orders we find that the
coefficient of z¢t™ is linear in y, with a non-zero coefficient for n > d + 1, and that,
as in the case n = d+ 1 just discussed, the coefficients in this term of y,4; all vanish
for any I > 0. Thus we may, in a unique and recursive manner, compute all the y;
for j =d+1,d+2,...,5s 4+t —d. Since as we have remarked, the f;’s satisfy the
equation, we have proven the theorem, unless d > s 4+ ¢t. But it can not be that
d > s, since we have a minimal solution. For if it were so, then the quantity in (4)
multiplied by f(z), would be a different solution set (of the same order and the same
polynomial degrees) to the polynomial defining equations. A linear combination of
these two polynomial sets could then be formed which would give a new solution set
of order k — 1 instead of k, which is a contradiction to our selection of a minimal set
of algebraic polynomials. ]

In order for algebraic approximants to be generally useful, we need to show that
their degree of contact with the defining series goes to infinity with M.

THEOREM 5. Given an essentially unique, minimal algebraic approximant whose
polynomials satisfy Q(0) # 0 and for which the error in the polynomial defining
equations is O(z™), the degree of contact ¢ of the algebraic approximant with the
defining series is bounded by
-1
c> [M ] , (™)

7

where [z] denotes the greatest interger less than or equal to z, and 1 < p < k+1
is the smallest value of v for which the coefficient of [f(z) — f(0)]” in (8) does not
vanish for z = 0. The value of (7) for = k + 1 is always a bound.

PrOOF: Let us expand the polynomial defining equation about the given value
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of £(0). We get,

E41 k SYPE N
f(z) = fF(O)]” Qjom, (2) (7 + DUF O b4l
Z[() (0)] 3 (j]+1—v)! = O(z"H).

(8)

j=v-1

Now we note that the v = 0 term vanishes at z = 0 as is required by the polynomial
defining equations. If the second term does not vanish at z = 0, then the deficiency is
zero. It is the case, when we denote the coefficient of [f(z)— f(0)]” by Q,(z), that for
at least one v = p that Q,(0) # 0. This result can be seen as follows. First consider
the case v = k + 1. If Qp41(0) # 0, we have the desired result. Otherwise, consider
the case, v = k. In this circumstance, Q(0) = 0 if and only if Qx_1,m,_,(0) = 0.
We can continue in this manner through all (k+ 1> v > 0) the Q,(0)’s. We must
eventually find one which does not vanish, since by hypothesis, Qm(O) # 0. In order
to focus on the computation of ¢, it is simplest to consider the determination of
fi. Let p be the smallest value of v for which Q,(0) # 0. From (8) there will be
a non-vanishing term, proportional to fI’, and potentially other terms of order z*
involving f; but no other series coefficients except fy. Let us now examine the series
in z term by term. The first term (beyond the v = 0 term) is linear in f; and if
the coefficient does not vanish, we can solve for f; directly. If it does vanish, then
the second term will be a quadratic equation in f; and there will be no mixed terms
involving f; or terms involving f; with 7 > 1 because their coefficients vanish as a
consequence of the vanishing of the first term. The examination continues in this
manner so that we either find an equation for fi, or the form of the next order term
in z involves f; alone. We are however guaranteed that we will find an equation for
f1 with at least one non-zero coefficient by the z# term. It will be of the uth order in
f1 and corresponds to p roots which are coincident at the origin. If the appropriate
root of this equation for f; is not a multiple root, then we can solve for all the rest
of the coefficients, f;, j > 1 because they will first appear linearly and if R(f) = 0
OR(f)
of

is the equation for f; then their coefficient will always be which is non-zero

for this case. By analysis of this case through some rather te(liious but straight-

forward algebra, one can see that there will always be an equation with at least

one non-vanishing coefficients to determine f; which includes the term Q,,(0) f]” 20K,

Thus the accuracy-through-order equations are always sufficient to determine at

least [(M — 1)/p] coefficients. |
An illustration of these theorems is given by the function

5 4 35 5 63

f():—l+z—%z +22_EZ +128 2566+O( ) (9)
which satisfies,
(L+2)[f()) +2(1+2)f(2) + 142z — 22 = O(z"). (10)
Condition (5) becomes in this case,
214 902 + DB = P~z 14224060 (1)
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We see by direct substitution of the defining series in (11) that, as z divides (11), the
deficiency is d = 1 thereby reducing the degree of contact by unity. This deficiency is
associated with the the coincidence of two solutions at z = 0, and the corresponding
vanishing of the first two terms in (8). Thus the solution for y(z) is,

y(z) =—1=+ 1+Z+0(26). (12)

We now consider the equivalence properties. In this regard it is useful to define
the Beckermann (1990) minimal polynomials. First, we need an ordering relation. If
m = (m_y,...,my) is a vector in the index space labeling the algebraic polynomials,
then the partial ordering relation @ < & means that every component of d is less than
or equal to the corresponding component of ¢. The relation @ = ¢ means that every
component of the two vectors is equal, and @ < & means that @ < ¢ holds but that
d = Cc'fails. Notice that if a; > ¢; and a; < ¢; for i # j, then @ and ¢ are incomparable
by these partial ordering relations.

DEFINITION 6. A nontrivial solution of (1) for the algebraic polynomials is called
a Beckermann minimal solution if, among all the solutions of (1), there is no other
nontrivial solution whose degree is less according to the above given partial ordering
relation.

Notice that a minimal solution according to Definition 2, is also a Beckermann
minimal solution, but that there may be Beckermann minimal solutions which are
not minimal according to Definition 2. We now give the following results.

THEOREM 7. The statement (i) f(z) is a functional element at z = 0 which satisfies

k
Y Qi (AR =0, (13)

j=—1

where Qﬁ is of true nominal degree and essentially unique, is equivalent to (ii) there
exists a functional element g(z) at z = 0 for which,

where ij is minimal and Q 17 18 @ Beckermann minimal solution of type M for 9(2),
the inequality is in the sense of Definition 6, and g(z) = f(z).

Proor: First, (i) implies (ii) as, if we pick g(z) = f(z), then @ is a solution of
type M for any M > m and as by hypothesis, as C_jm is minimal, it is at least a
Beckermann minimal solution of type M.

Second we must consider, whether (ii) implies (i). Suppose that (ii) holds, there-
fore we must have

k
Q-1m_, () + ZQj,mj (2)g() " = 0(z"), Vi< ce. (15)

By the minimality of Qﬁ(l), there are no common factors of the type 1 + az and
the division by any factor of 27 leaves (15) unchanged except that m; — m; — 7, as
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it holds for all t < co. As we have seen in the proof of Theorem 4 that we can divide
both sides of (5) by 2%, the integration of this divided equation shows by the implicit
function theorem that g(z) is a functional element. Thus the left-hand side of (15)
is regular at z = 0 and so by (15) must be identically zero. The remaining problem
to complete the proof is to show that g(z) = f(z). This result follows from the
accuracy-through-order Theorem 4 or 5 and the principle of analytic continuation.
The point is that either of these theorems show that the degree of contact at the
origin between the algebraic approximant and g(z) is infinite, provided that at most
d + 1, where d is the deficiency, of the initial conditions y/) (0) = ¢/ (0) hold. This
result, by the principle of analytic continuation, proves that any y(z) = g(z) and so

f(2) = g(2)- n
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